\(\int \frac {1}{(d+e x^2) \sqrt {a-c x^4}} \, dx\) [160]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 72 \[ \int \frac {1}{\left (d+e x^2\right ) \sqrt {a-c x^4}} \, dx=\frac {\sqrt [4]{a} \sqrt {1-\frac {c x^4}{a}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} e}{\sqrt {c} d},\arcsin \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt [4]{c} d \sqrt {a-c x^4}} \]

[Out]

a^(1/4)*EllipticPi(c^(1/4)*x/a^(1/4),-e*a^(1/2)/d/c^(1/2),I)*(1-c*x^4/a)^(1/2)/c^(1/4)/d/(-c*x^4+a)^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1233, 1232} \[ \int \frac {1}{\left (d+e x^2\right ) \sqrt {a-c x^4}} \, dx=\frac {\sqrt [4]{a} \sqrt {1-\frac {c x^4}{a}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} e}{\sqrt {c} d},\arcsin \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt [4]{c} d \sqrt {a-c x^4}} \]

[In]

Int[1/((d + e*x^2)*Sqrt[a - c*x^4]),x]

[Out]

(a^(1/4)*Sqrt[1 - (c*x^4)/a]*EllipticPi[-((Sqrt[a]*e)/(Sqrt[c]*d)), ArcSin[(c^(1/4)*x)/a^(1/4)], -1])/(c^(1/4)
*d*Sqrt[a - c*x^4])

Rule 1232

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[
a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]

Rule 1233

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[Sqrt[1 + c*(x^4/a)]/Sqrt[a + c*x^4]
, Int[1/((d + e*x^2)*Sqrt[1 + c*(x^4/a)]), x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] &&  !GtQ[a, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {1-\frac {c x^4}{a}} \int \frac {1}{\left (d+e x^2\right ) \sqrt {1-\frac {c x^4}{a}}} \, dx}{\sqrt {a-c x^4}} \\ & = \frac {\sqrt [4]{a} \sqrt {1-\frac {c x^4}{a}} \Pi \left (-\frac {\sqrt {a} e}{\sqrt {c} d};\left .\sin ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{\sqrt [4]{c} d \sqrt {a-c x^4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.19 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.26 \[ \int \frac {1}{\left (d+e x^2\right ) \sqrt {a-c x^4}} \, dx=-\frac {i \sqrt {1-\frac {c x^4}{a}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} e}{\sqrt {c} d},i \text {arcsinh}\left (\sqrt {-\frac {\sqrt {c}}{\sqrt {a}}} x\right ),-1\right )}{\sqrt {-\frac {\sqrt {c}}{\sqrt {a}}} d \sqrt {a-c x^4}} \]

[In]

Integrate[1/((d + e*x^2)*Sqrt[a - c*x^4]),x]

[Out]

((-I)*Sqrt[1 - (c*x^4)/a]*EllipticPi[-((Sqrt[a]*e)/(Sqrt[c]*d)), I*ArcSinh[Sqrt[-(Sqrt[c]/Sqrt[a])]*x], -1])/(
Sqrt[-(Sqrt[c]/Sqrt[a])]*d*Sqrt[a - c*x^4])

Maple [A] (verified)

Time = 0.45 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.35

method result size
default \(\frac {\sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \Pi \left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, -\frac {e \sqrt {a}}{d \sqrt {c}}, \frac {\sqrt {-\frac {\sqrt {c}}{\sqrt {a}}}}{\sqrt {\frac {\sqrt {c}}{\sqrt {a}}}}\right )}{d \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}\) \(97\)
elliptic \(\frac {\sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \Pi \left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, -\frac {e \sqrt {a}}{d \sqrt {c}}, \frac {\sqrt {-\frac {\sqrt {c}}{\sqrt {a}}}}{\sqrt {\frac {\sqrt {c}}{\sqrt {a}}}}\right )}{d \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}\) \(97\)

[In]

int(1/(e*x^2+d)/(-c*x^4+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d/(1/a^(1/2)*c^(1/2))^(1/2)*(1-1/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+1/a^(1/2)*c^(1/2)*x^2)^(1/2)/(-c*x^4+a)^(1/2)
*EllipticPi(x*(1/a^(1/2)*c^(1/2))^(1/2),-e*a^(1/2)/d/c^(1/2),(-1/a^(1/2)*c^(1/2))^(1/2)/(1/a^(1/2)*c^(1/2))^(1
/2))

Fricas [F]

\[ \int \frac {1}{\left (d+e x^2\right ) \sqrt {a-c x^4}} \, dx=\int { \frac {1}{\sqrt {-c x^{4} + a} {\left (e x^{2} + d\right )}} \,d x } \]

[In]

integrate(1/(e*x^2+d)/(-c*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c*x^4 + a)/(c*e*x^6 + c*d*x^4 - a*e*x^2 - a*d), x)

Sympy [F]

\[ \int \frac {1}{\left (d+e x^2\right ) \sqrt {a-c x^4}} \, dx=\int \frac {1}{\sqrt {a - c x^{4}} \left (d + e x^{2}\right )}\, dx \]

[In]

integrate(1/(e*x**2+d)/(-c*x**4+a)**(1/2),x)

[Out]

Integral(1/(sqrt(a - c*x**4)*(d + e*x**2)), x)

Maxima [F]

\[ \int \frac {1}{\left (d+e x^2\right ) \sqrt {a-c x^4}} \, dx=\int { \frac {1}{\sqrt {-c x^{4} + a} {\left (e x^{2} + d\right )}} \,d x } \]

[In]

integrate(1/(e*x^2+d)/(-c*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(-c*x^4 + a)*(e*x^2 + d)), x)

Giac [F]

\[ \int \frac {1}{\left (d+e x^2\right ) \sqrt {a-c x^4}} \, dx=\int { \frac {1}{\sqrt {-c x^{4} + a} {\left (e x^{2} + d\right )}} \,d x } \]

[In]

integrate(1/(e*x^2+d)/(-c*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(-c*x^4 + a)*(e*x^2 + d)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (d+e x^2\right ) \sqrt {a-c x^4}} \, dx=\int \frac {1}{\sqrt {a-c\,x^4}\,\left (e\,x^2+d\right )} \,d x \]

[In]

int(1/((a - c*x^4)^(1/2)*(d + e*x^2)),x)

[Out]

int(1/((a - c*x^4)^(1/2)*(d + e*x^2)), x)